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Lecture 7 Highlights 
Phys 402 

 
The Hyperfine Interaction in Hydrogen 

We considered the hyperfine interaction between the magnetic moment of the 
proton and that of the electron in the hydrogen atom.   

The proton has a magnetic moment due to the intrinsic spin, orbital motion of its 
quark constituents, and the quark-gluon plasma.  It is given by: 
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where 59.5≅g , e is the electronic charge, pm is the mass of the proton, and pS


is its spin 
angular momentum.  The fact that g has such an odd value for the proton (as opposed to 
2.00 for the electron) implies that it has internal structure.  Note that the proton is a spin-

1/2 particle, just like an electron ( e
e

e S
m
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−=µ ).  Its spin lives on a 2-state ladder, with 

steps separated by  , just like the electron.  In the hydrogen atom the magnetic field 
generated by this magnetic moment interacts with the magnetic moment of the electron to 
give rise to the hyperfine perturbing Hamiltonian: 
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where the magnetic field due to the proton’s dipole moment is given by Griffiths E+M 
book, Eq. 5.90: 

  [ ] )(
3

2ˆ)ˆ(31
4

)( 30
3

0 rrr
r

rB pppdip


δµ
µ

µµ
π
µ

+−•= , 

where the dipole lies at the origin of the coordinate system.  The last term comes from the 
infinitesimal dipole at the proton location.  (The calculation assumes a uniformly 
magnetized sphere rotating at the origin.  One takes the limit as the radius of the sphere 
goes to zero.  The internal field diverges in such a way that the magnetic moment of the 
infinitesimal sphere remains finite at pµ

 .  This process leads to the delta-function term.  
See David J. Griffiths, “Hyperfine splitting in the ground state of hydrogen,” Am. J. Phys. 
50, 698 (1982), posted on the class web site) 

Note that we could also take the perspective of the proton and evaluate the magnetic 
field created by the electron magnetic moment at the proton location.  Hence we expect 
that the final expression for the perturbing Hamiltonian to be symmetric with respect to the 
proton and electron. 

In order to keep things simple we will only consider Hydrogen atoms in the 𝐿𝐿�⃗ = 0 
state.  This eliminates the possibility of spin-orbit interaction with the nuclear spin.  It is 
also the most interesting case anyway. 
 Evaluating the first order correction to the energy of the hydrogen atom yields: 
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https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Griifiths%20article%20on%20hyperfine%20interactions%20in%20hydrogen.pdf
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Remember that “ n ” in the wavefunction subscript represents a list of quantum numbers, 
in general.  Here we are using the standard un-perturbed Hydrogen atom wavefunctions 
|𝜓𝜓𝑛𝑛0⟩~|ℓ 𝑚𝑚ℓ⟩|𝑠𝑠 𝑚𝑚𝑠𝑠⟩. 
 If we specialize the case of zero orbital angular momentum, 0= , for the un-
perturbed states, the first term above is zero (see problem 7.31).  The second term simplifies 
because of the delta function, and we have: 
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where now n represents the principal quantum number in the hydrogen atom.  One finds 

from Eq. (4.89) that 33
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ψ = , where a is the Bohr radius.  To evaluate 

pe SS


•  we define a total angular momentum vector pe SSS


+= , just as we did before 

to evaluate the spin-orbit perturbation.  Note that 0=L


here by assumption.  Hence S


is 
the total angular moment of the Hydrogen atom and is therefore a constant of the motion 
in the absence of an external torque (i.e. an external magnetic field).  Through the same 
manipulations used to evaluate 𝐿𝐿�⃗ ∙ 𝑆𝑆  in the spin-orbit perturbation, we arrive at the 
following result; 
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Note that the electron and proton are both spin-1/2 particles and so1
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We treated the total spin of two spin-1/2 particles in the Discussion 3 and found that two 
ladders of states are possible, that of 1=s (the 3-state Triplet with 22 2=S ) and 0=s

(the 1-state Singlet with 22 0=S ).  This yields two possible values for the first-order 
corrected energy: 
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 Consider the case of 1=n , which is the ground state of Hydrogen (1s).  This state 
is now split into two hyperfine-split states as shown in the diagram. 

                                                 
1 What wavefunction do we use to calculate 〈𝑆𝑆𝑝𝑝2〉?  We can augment the hydrogen atom wavefunction with 
a proton spinor ket as 𝜓𝜓𝑛𝑛0 = |𝑛𝑛 ℓ 𝑚𝑚ℓ⟩|𝑠𝑠𝑒𝑒  𝑚𝑚𝑠𝑠𝑒𝑒⟩|𝑠𝑠𝑝𝑝 𝑚𝑚𝑠𝑠𝑝𝑝�, which is a direct product state.  The proton spinor 
ket |𝑠𝑠𝑝𝑝  𝑚𝑚𝑠𝑠𝑝𝑝� introduces the 2D Hilbert space of the proton spin, and expands the Hilbert space of the 
hydrogen atom by a factor of 2. 

https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Phys%20402%20F22%20Discussion%203.pdf
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The energy splitting is only about 6 µeV, compared to the ground state binding energy of 
13.6 eV.  The upper state has a lifetime of about 1015 seconds, or about 108 years.  When 
the atom makes a transition from the triplet state to the singlet state, it gives off radiation 
of frequency 1.420 GHz, with a wavelength of about 21 cm.  This radiation can propagate 
through clouds of dust in the galaxy.  From measurements of the Doppler shift of this 
radiation, the spiral structure of our galaxy was deduced.  This transition photon was also 
used as the standard of length and time in the “post card” attached to the Pioneer 10 
spacecraft and the phonograph record attached to the Voyager spacecraft. 
 Note that the picture of the orientation of the Nuclear spin and Electron spin in the 
above figure is somewhat deceiving.  The actual states are described by the triplet and 
singlet spin wavefunctions, and can not be understood in terms of the incomplete “un-
coupled” representation illustrated with the black and red arrows. 
 
 

 

https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Pioneer%2010%20Hyperfine%20transition.pdf

